[image: image1.png]

MIDDLE EAST TECHNICAL

UNIVERSITY

[image: image2.png]

COMPUTER ENGINEERING

DEPARTMENT

INITIAL DESIGN
REPORT
CENG 491

[image: image3.jpg]MOON

SOFTWARE SOLUTIONS

	1. INTRODUCTION
	4

	1.1. Project Description
	4

	1.2. Project Goals and Scope
	4

	1.3. Project Features
	4

	1.4. DESIGN Constraints
	5

	1.5. Purpose of the Document
	6

	2. PROJECT REQUIREMENTS
	6

	2.1. Functional Requirements
	6

	2.1.1. Menu Requirements
	6

	2.1.1.1. General Requirements
	7

	2.1.1.2. Menu Items Requirements
	7

	2.1.2. Game Flow Requirements
	8

	2.1.2.1. Game Logic Requirements
	8

	2.1.2.2. Environment
	9

	2.1.2.3. Player’s Car
	9

	2.1.2.4. Player – Game Interaction Requirements
	9

	2.1.3. Operational and Structural Requirements
	10

	2.1.3.1. Game Engine
	10

	2.1.3.2. Graphics
	10

	2.1.3.3. Sounds
	10

	2.1.3.2. Artificial Intelligence
	11

	2.1.3.3. Physics
	11

	2.1.3.4. Game Data
	11

	2.1.3.5. Networking
	11

	2.2. Non-Functional Requirements
	12

	2.2.3. Usability and Playability
	12

	2.2.4. Reliability and Security
	12

	2.2.5. PORTABILITY
	12

	2.3. SOFTWARE REQUIREMENTS
	12

	2.4. HARDWARE REQUIREMENTS
	12

	3. GAME SCENARIO
	13

	3.1. Training
	13

	3.2. Connect and play with other users
	14

	4. INTERFACE DESIGN
	15

	4.1. MAIN MENU DESIGN
	15

	4.2. ONLINE GAME MENU DESIGN
	16

	4.2.1. Login Menu
	16

	4.2.2. Sign Up Menu
	16

	4.2.3. Forgot Password Menu
	17

	4.3. TRAINING GAME MENU DESIGN
	17

	4.4. OPTIONS MENU DESIGN
	18

	4.4.1. Audio Menu Design
	19

	4.4.2. Controls Menu Design
	19

	4.4.3. Graphics Menu Design
	20

	4.5. CREDITS DESIGN
	21

	4.6. GAME SCREEN DESIGN
	22

	4.7. CAR MARKET MENU DESIGN
	23

	4.8. BUY FUEL MENU DESIGN
	24

	5. INFRUSTRUCTURE
	24

	 5.1. DELTA3D
	24

	5.2. CAL3D
	25

	5.3. OPEN DYNAMICS ENGINE
	25

	5.4. OPENAL
	26

	5.5. ARTIFICIAL INTELLIGENCE ENGINE
	26

	5.6. NETWORK
	27

	5.7. DATABASE
	28

	6. DETAILED DESIGN
	29

	6.1. ACTIVITY DIAGRAMS
	29

	6.2. SEQUENCE DIAGRAM
	31

	6.3. COLLABORATION DIAGRAM
	33

	6.4. DATA FLOW DIAGRAM
	35

	6.4.1. DFD Level 0
	35

	6.4.2. DFD Level 1
	36

	6.5. USE CASE DIAGRAM
	37

	6.6. CLASS DIAGRAM
	39

	6.7. STATE TRANSITION DIAGRAM
	40

	7. DATABASE SCHEMA
	41

	8. SYNTAX SPECIFICATION
	43

	8.1. DATABASE NAMING CONVENTIONS
	43

	8.2. FILE NAMING CONVENTIONS
	43

	8.3. CLASSES
	43

	8.4. METHOD AND FUNCTION DEFINITIONS
	43

	8.5. GENERAL CODING PRINCIPLES
	44

	8.6. VARIABLE NAMING CONVENTIONS
	44

	8.7. COMMENTING
	44

	9. GANNT CHART
	45

1. INTRODUCTION
1.1. Project Description
The main purpose of the project is to develop a massively multiplayer 3D online game which is played via internet through all over the world. The game is formed considering real life conditions so the player can feel the reality and live his own virtual life by gaining money and spending it to necessary things to keep going his life in the game. The title for the game is “The TAXI”. Because initially all users are given a commercial taxi and the game is mainly played with this car.

1.2. Project Goals and Scope
The goal of this project is to design and implement an interactive, massively multiplayer online 3D game up to a position such that it can be released for commercial purpose. The resulting program will be real-time, realistic with its graphical environment and car physics.

During development of project, we will follow the below methodology.

· Analyzing the current car racing games

· Analyzing all the requirements and specifications for the game

· Design of a game according to the defined criteria

· Detailed search on the requirements and solutions

· Implementation and testing of the game

· Technical support and documentation

1.3. Project Features
Discarding the details, our project will have mainly following features:

· 3D Computer Graphics: Since visualization is in vital importance in a 3D game we will make a special effort on graphics design. We will provide advanced graphics by using some high level OpenGL libraries.

· Artificial Intelligence: Our game is not a pure car racing game but also a strategy game, so AI is highly important. We model our artificial intelligence system according to our needs. For example there are artificial customers, traffic and some logical objects. Then we will make a good organization among them.

· Updatable 3D Tracks and Environment: We will provide a plug-in to load the newly designed roads as patches. By this way we can achieve to make user playing the game continuously. Since we will try to do everything dynamic as much as possible it is, we can add new features to our game.

· Animation: We have modelled the scenario according to real life, so for our game to be realistic it will support animation. This can be a person animation, an environment object animation or a car animation which is highly needed to make smooth transitions between positions while the data packages are coming through network.

· Game Physics: Game physics is required to make the effects appear more realistic to the observer, in our case the player. We will model the car physics, collision detection and also the physics of the other objects.

· Network Part: Our game will be played via internet so there will be a server to which all users have to conect to play the game. The server will form the core part of the multiplayer concept. It will have artificial intelligence inside as well as the connection to client part. There will also be a big database which keeps the account information of the registered users and another onde holding the online users at that time.

1.4. DESIGN Constraints
Software has many constraints as any other real life jobs. Since our project is a time limited project and we are lack of manpower, constraints are more important in our project.
· Project Schedule
The schedule of our project is explained in the Gantt-Chart part. According to this time chart, the project has to be designed and implemented in 8 weeks. Workload must be scattered equivalently because of the demos that we are supposed to make, which are in fact small milestones for us.

· Language Constraints
We will use an object-oriented language to program the game, because the best granularity can be achieved by the help of OO languages. Since the development environment we will use supports C++, we have chosen it.

· Data Constraints
As we process a heavy visualization and store the data for other users we need a huge amount of data storage on users’ PC. Server side is not so different from the client side. Since we will hold map info, registered users info, car info, environmental info etc. on server, there will be heavy data traffic between server and clients.

· Execution Speed
To be realistic especially in a massive online game, data transfer should be fast and minimal. Also to obtain a perfect smooth transition between frames we need to supply minimum 24 frames per second refresh rate. Since we need to pass info about the traffic in city to every user, we must optimize the data packages that will be sent. This should be obtained by sending traffic info of only a limited area which is closer to player’s car. Near the fact that data transfer should be quick, graphic display must also be optimized. Since we will generate 3D scenes, we must use optimized algorithms so as not to consume CPU very much, which may decrease the performance in advance. While using optimized algorithms in graphics, we should also take care of the trade off between graphics quality and execution speed.

· User Interface
The user interface will be simple and easy to use. Menus should be provided in a logically categorized way. User should be able to play game without need to enter several menus, because many people do not like visiting several menus so as to play a game.

1.5. Purpose of the Document
The goal of this document is to explain the initial design about the game by covering the following parts:

· Game concept

· Game scenario

· Game user interfaces and explanations

· Game class diagrams

· Game DFD diagrams (also the other diagrams)

· Game engines

· Game network

· Game database

2. PROJECT REQUIREMENTS
Software requirements is the documentation that completely describes the behavior that is required of the software—before the software is designed, built, and tested. Any coherent and reasonable project must have requirements that define what the project is ultimately supposed to do.
Since we have changed our scenario according to the customer’s request, we need to re-specify the requirements of our project. Despite the fact that our ex-scenario was also related to cars (namely it was a car racing game), there are many important differences which forced us to make a new requirement analysis. So we will state the requirements here again for “The TAXI” project. Since our new scenario is explained in detail explicitly in this report, we will only define the requirements related to the scenario here.

2.1. Functional Requirements
Functional requirements define the internal workings of the software: that is, the calculations, technical details, data manipulation and processing and other specific functionality that show how the use cases are to be satisfied.

Functional requirements fall into three groups of types, namely normal requirements, expected requirements and exciting requirements.
(*) Normal Requirements: The objectives and goals that are stated by the instructor and the assistant of the course. These features are expected from a massively multiplayer online game.

(**) Expected Requirements: These requirements are implicit to the product and so fundamental that the customer does not explicitly state them.

(***) Exciting Requirements: These features go beyond the customer’s expectations and prove to be satisfying when present. These features are not guaranteed to be implemented because of the time and manpower constraints.

2.1.1. Menu Requirements
These are the requirements related to the menu that is displayed when player enters to the game. This requirement is composed of two subtitles, namely general requirements for the general properties of the menu, and menu items requirements for the functionalities of the menu items.

2.1.1.1. General Requirements
This Main menu is displayed when player enters to the game and when a race is finished and turned back to main menu.

· (*) This menu must be designed esthetically so as to be attractive for the player. Suitable colors must be selected and elliptic shapes must be used instead of cornered shapes.

· (*) Player can move on sub-menu titles with keyboard by clicking up-down arrows. And also user can freely move and use mouse for entering sub-menus.

· (**) When player comes on a sub-menu title, some graphical changes must be done on menu, such as flaming up a new transparent car object or logo on the menu screen. Meanwhile a sound may also be played.

· (**) A suitable music is played when user stays inside this menu.

2.1.1.2. Menu Items Requirements
· Training

· (*) A new user will need to learn how to play the game. Since there is some specific concepts and roles that are new to people, new players will be able to play some duties one by one.
· (**) User will be able to select the training that s/he will play.
· (**) Training menu leads to a training sub-menu in which user selects the training. Trainings will be listed here and their titles are: City Tour, Serving Passenger, Buying Fuel, Maintaining Car, and Visiting Car Market.

· (**) When a training is selected, game will start in training mode. In this mode player will be informed with a bubble menu about the movements that s/he should do for completing the mission.
· Online Game

· (*) When an internet connection exists, user will be able to connect to the main server, and play online game with people from all over the world.
· (**) When clicked, a sub menu will appear for carrying out the connection to the server. User will be able to connect to the online game if s/he enters the right username/password combination.
· (**) If user doesn’t have an account, s/he can get a new account by clicking the “Sign Up” button. This button will lead user to a new sub-menu in which s/he will be asked for “Username”, “Password”, ”Password Confirmation”, and “E-mail Address”. User can form a new account by clicking “OK” button. If an error occurs, user will be informed about the progress.

· (**) If user has an account but forgot the password, s/he will be able to get his/her password. For this purpose, s/he must click the “Forgot Password” button. And from the coming sub-menu, s/me must click the “Send My Password to My Mail” button. By that way, password of the user will be sent to the e-mail address of the user that s/he had assigned when s/he first sign up.
· (**) By clicking “Login” button, user will connect to the online game.
· Options

· (*) Users can adjust the general options related to the game.
· (**) User can change the speed unit that is displayed on the race screen. Choices are km/h and mph from the “Speedometer” section.
· (**) User can make changes on audio settings. A submenu exists in options menu for audio. In this menu “Menu Music”, “Car Radio”, and “Sound Effects” sections exist, which are used to increase and decrease the sound of the related kind.

· (**) Users will be able to visualize and change the game controls (which will only be on keyboard).

· (**) Users will be able to change the graphics options from the submenu that is opened by clicking the “Graphics” button. This submenu includes “Screen Resolution”, “World Detail”, “Car Detail”, “Texture Detail” and “Viewing Distance”.

· (**) Screen resolution will be able to set to either 800x600 or 1024x768 which are suitable for most of the screen cards used widely today.

· (**) User will be able to adjust world detail, car detail and texture details to high, medium or low. Best quality will be gained at “high” level, but due to the hardware constraints, user may want to set these to medium or low.

· (**) Viewing distance will be able to be set by the user as “far” and “near”. This option will define how far distance will be rendered. For a more realistic feeling, this must be set to far. But it may be set to near because of hardware constraints of the user.

· Credits

· (**) This menu will list the names of the members of the project team, related information about our company, and names of the individuals and corporations that we have taken help from.

· (**) This list will slide slowly on the screen while music is played at the background.

· Quit

· (*) User can return to the operating system by clicking “Quit”.
2.1.2. Game Flow Requirements
These are the requirements that are related to the game play. We examined game flow requirements in four subtitles: Game logic requirements, Environment requirements, Car requirements, and player-game requirements.

2.1.2.1. Game Logic Requirements
· (*) Since this is a game we are producing, players should not get bored while playing, besides game should make them play more as they play. We will provide this fact by exciting the avidity of human to money and success.

· (**) Our game is mainly a massively multiplayer online game. So we provide user to play with other players all over the world. User also will be able to play offline game, but this will be limited game just for training of the user.

· (**) User will earn money by serving customers to destinations given and when selling his/her car, and lose money when buying fuel, paying traffic taxes, maintaining car, buying a new car.
· (**) When user first starts game, s/he will be a free taxi driver, i.e. s/he will not be member of any cabstand. But as player earns money, s/he will be able to enroll to a cabstand in exchange for a reasonable amount of money. In short player and the owner of the cabstand will obtain a contract. (Owner of a cabstand is the server as default)
· (***) Player may buy shares of a cabstand, a fuel station, a car maintenance shop. By that way user will be able to earn more money. But there will be trade-offs. Shares of the owner should gain or lose value, thus making player feel more excitement.
· (***) Player can buy traffic insurance.
· (***) Crashing will give damage to both cars, responsible player from the crash will pay the money of the counter side, where as his/her car will be damaged and this will make him/her lose customer unless s/he repair his/her car. If the player has traffic insurance, damage will be supplied by the insurance company.
2.1.2.2. Environment
· Terrain, Buildings and Objects

· (*) Game must have a terrain which gives the feeling of realism to player.

· (**) Terrain will consist of sky, ground, road, buildings, skyscrapers, trees, and some extra objects such as statue, street lamps, dustbin etc.

· (**) Car is not permitted to get out of the road. This will either be satisfied by putting protective embankment on borders of the road, or by just preventing the car from getting out of the road as if it can not climb over pavements.
· (**) There will be people on road, some of which will be the customers waiting for a taxi.
· (***) Some external objects can be drawn such as a passing helicopter, plane, ship etc.
· Cars

· (*) There will be other players’ taxies and city traffic on the game environment.

· (**) Cars can crash. Crashing will give damage to both cars.
· (**) Wheels of the cars will turn left and right according to the direction given by the player.

· (***) Smoke can arise from the car in serious crashes.

· (***) Sparks can rise from car when it crashes with a barrier.
2.1.2.3. Player’s Car
· It has movement capabilities

· (*) Go forward, go backward.

· (*) Turn left, turn right.

· (*) Stop suddenly by using handbrake.

· It has external effects

· (**) It can sound the horn.
· (**) When stepped on break, back break lights are turned on.

· (***) When stepped on break suddenly, car tires will mark the road.

2.1.2.4. Player – Game Interaction Requirements
· (*) Player controls the car with the keyboard.
· (*) Game uses monitor and speakers to send output to player.
· (**) Player can view the game from different outside camera views, namely they are near and far views.
· (**) Player can view the game from inside the car, i.e. view the steering wheel, speedometer, etc. as in real car.
· (**) Player can see the road map, back of the car from mirror, fuel status, speed, motor spin and gear of the car. All these are located in suitable positions on screen.
· (**) Player will be informed about important events such as obligation to pay tax, or need to serve a customer from the cabstand etc. via a message bubble located in a suitable position of the screen.

· (**) Player will be able to monitor the money that s/he has.

· (**) Player will be able to monitor state of the career of himself/herself (i.e. if player satisfies the customer, his/her career will be successful, and it will become unsuccessful otherwise).

· (**) Player will be able to monitor the status of car damage and also the status of the driving license that s/he has. All these four status viewing sections(money, career, car damage, driving license) will be located altogether at upper right corner of the screen, and user will be able to show/hide this menu with just one click and also with a keyboard shortcut.
· (***) Player will hear motor sound, changing according to the motor spin.
· (***) Player will take a shaking view when a crash occurs and camera view is from inside of the car.
· (**) Player can pause the game by clicking only if s/he is stopped the car near the road, by clicking ESC key. Then ESC menu will appear. Pressing ESC while car is moving is not allowed since this may affect other players. User may leave the game via this menu.
· (**) Player can adjust the radio settings such as changing channel, decreasing volume etc. from the sub-menu button located at the bottom of the screen.
· (*) Player can exit from race, exit from game directly from the escape menu of the race.
· (*) Player can resume the game from the escape menu of the race.
· (**) Player can see the statistics of his/her car via the submenu that is opened when “My Car” button is clicked which is located at the bottom of the screen.

· (***) Player can follow status of his/her extra jobs such as the state of the shares of the fuel station, cabstand etc. via the submenu which is opened when “Extra Jobs” button is clicked that is located at the bottom of the screen.
2.1.3. Operational and Structural Requirements
These requirements form the basics of the game. These objects affect the reality of the game, thus give user enthusiasm to play more and more. We examined these requirements in six subtitles: Game engine, graphics, sound, AI, physics, game data, networking.

2.1.3.1. Game Engine
· (*)The core functionality typically provided by a game engine includes a rendering engine for 2D or 3D graphics, a physics engine or collision detection, sound, animation, artificial intelligence, networking, and a scene graph.
· (*)Combines the subcomponents of the game.
2.1.3.2. Graphics
· (*) Renders the scene in 3d mode.
· (**) Maps the textures on objects.
· (**) We need to apply some tricks to improve the performance of the game without disturbing the user. For instance, instead of using many lights, we should use textures that have the light effect on themselves and so on.
· (***) Draws the objects that are far to camera with low quality than that are near.
2.1.3.3. Sounds
· (**) Menu clicks; passing from menu to menu actions produces sound.
· (**) In main menu and escape menu, music is played at the background.
· (**) Motor sound is played during race, changing according to motor cycle.
· (**) Collision sound is played on car crashes.
· (**) Cars can horn; this sound will also be played.
· (**) Music is played during game by the help of car radio component.
2.1.3.4. Artificial Intelligence
· (*) There will be city traffic which is controlled by the AI.
· (**) Server will distribute customers to the free taxi owners and also to the cabstands.
· (**) Computer will judge the guilty side on crashes, and give punishment accordingly.
2.1.3.5. Physics
· (*) Car must obey to the real world physics rules.
· (***) Car should wave by help of shock absorber’s movement.
2.1.3.6. Game Data
· City

· (*) Terrain

· (*) Objects

· (*) Buildings

· Sounds

· (*) Menu clicks

· (**) Speeches

· (**) Music

· (**) Motor/Horn/Collision/Crash
· Player Info

· (*) Account info

· (**) Properties of the car, status of money, career, driving license, fuel etc.

· (**) Free taxi or member of a cabstand

· (***) Extra job info

· (**) Game settings info. General game settings must be saved, and changes that user has made must be permanent (i.e. not change to default when game is started each time from the OS.)
· (*) Textures

· (**) Car features/photos/statistics

· (*) Car models(3D objects)

· (*) Images

· (*) Settings

2.1.3.7. Networking
· (*) Players will connect to a network game via internet
· (**) Server will collect the coordinates and statistics of each player, combine data, manipulate collisions, add city traffic into account, then serve the data to every client. This process will be repeated periodically. For increasing performance of network, we need to send as limited information as possible. This may be gained buy sending only the coordinates of the cars that are nearer to the player.
· (**) Server will be able to apply AI to city traffic.
2.2. Non-Functional Requirements
Non-functional requirements support functional requirements, by imposing constraints on the design or implementation (such as performance requirements, security, quality standards, or design constraints).

2.2.1. Usability and Playability
Since games are for fun, it must be easy to learn and use so as not to be boring for the user. So we thought that menus must be designed as understandable as possible. Also we planned to follow the traditional approaches in many designing menus, because players will compare our game to car racing games that s/he has played earlier. So in design we inspired by some other games on market.

We will add training sections for the game, so as to educate new players. By that way user will not be unfamiliar to game concepts when s/he is playing with his/her account on the internet. In training sections, basic concepts of the game will be introduced.

Near usability, playability is also very essential. User must not get bored when riding car. Game will give the feeling of competition and use the greed of human for money and success. Since people do not get bored when running after the greed, we will benefit from that side of humans. Game will not be too hard or too easy. Namely becoming rich won’t be easy and it will require much work. But also user will not get poor easily in game unless s/he doesn’t work totally (i.e. computer will give chances to player to serve customers). Control of the car will be efficient and easy as it is in most of the car related games that are on market today.

2.2.2. Reliability and Security
Game must be debugged very carefully. Product must be checked in many aspects so as not to cause any problem to the end user. Since our game is also an online playable game, security is very important for us. Protocols that we use must be integrated to system very carefully. There shouldn’t be any open backdoor left on computers of players during and after plays.

2.2.3. PORTABILITY
Since time is a big concern for us on this project, we will not be able to make a platform independent game. Because this will increase our work from two to three, which will make us fall behind our targets. Instead we will make our game platform dependent. And since Windows has dominance on market, and project group is more familiar with Windows concepts, we will make our game work well with Microsoft Windows.
2.3. SOFTWARE REQUIREMENTS
Windows operating system is needed for running our game. This is essential because OS s provides the connection between programs and low level hardware.

2.4. HARDWARE REQUIREMENTS
· A PC with Pentium 4 class CPU
· Internet connection via modem or wireless or Ethernet card
· Sound card
3. GAME SCENARIO
In this part the scenario will be explained in details.

Although this is an online game it has to be installed to all users computer and then played with other users by activating the online account.

When user starts the game first time, he is asked to create an account only by entering a new username, and then the game is loaded for that user. If he has already an account, he selects his username and the game is configured for that user. Then there available two options to user:

· Training or,

· Connect and play with other users

3.1. Training
This part is designed to help user to learn how to play the game by visual and audio interaction with user. When user selects training, he is redirected to the training menu. There are some options which user can choose considering which part he wants to play or learn. For example some possible options are:

· Explore the city

· Learn how to get fuel

· Learn how tosell and buy car

· Learn how to maintain and customize the car

· Learn how to a member of a cabstand

· Learn the tips of making money

· Learn how to communicate with other online users

If user chooses to explore the city, he just goes around the city and learns the roads, streets and sees where some important buildings are which are highlighted on the map may be on the right of the screen.

Purpose of the second option is to make user to try to get fuel for his car by going to petrol station. There will be visual aids and sound interaction with user in this part and the following parts which give user some commands to do. These are small missions to help user to get the points correctly. When user enters the petrol station, a menu appears on the screen where user can decide the type and amount of the fuel he wants to take. Since different type of cars uses different type of fuels, there appears only the suitable ones for that car. And also the user can see the cost of the choice he has decided.

In the third training part, user is taught to sell a car as well as to buy a car from the autobazaar. User is commanded to run the car to the bazaar and enter the menu. On the menu, there are two options: sell the existing car or buy a new one. When sell option is selected, the value and the details of the user’s car is displayed on the screen so the user can decide whether to sell at that cost. The value of each car is determined according some realistic measurements such as the damage it has, the production year, the maintenance rate, the motoring fine and etc. So when user customizes his car or pays the fines, he can sell his car at a higher value. On the other hand, user can also buy a car by just clicking the buy button. At this stage, the properties of the available cars are shown on the screen such as acceleration, top speed, handling or other extra ones we may add, and user can go around them via keyboard or mouse. Also the cash the user has and the cost of the car also displayed so the user can see whether he can afford it.

At maintenance part, user is given the order to drive the car to the maintenance shop or building and enter it. In this menu user is informed about the current parts of his car and also the parts that he can buy for his car, the costs of the parts are displayed on the screen. There is another option in the menu by which user can make his car get rid of from the damage as much as he pays, so he can make his car healthy which is important to attract the customers.

At being a member of a cabstand stage, user learns how to register himself to a cabstand and the benefits of it. While driving the car, user can always see the available cabstands and the short descriptions about them. The description includes some small information such as the place of the cabstand, the popularity, the profit rate, how many members it has as well as the money it requires to be a member of it. We have not decided yet which informations will be displayed during free roam and while at that cabstand. But it is certain that to be a member user has to go to that cabstand and accept the contract. The contract includes some conditions about the membership such as the cost, the leaving compensation and some other restrictions. The benefits of the cabstand will be explained in the following sections.

In training, user also can learn some basics of how to make money which is required for the continuity of the career. If user losts all of his money, he has to reset his career. In this part, user is given some tips to spend less money or gain more. Some examples are “select the shortest path while going somewhere, so the customer may give much money in consideration of the time and you use up less fuel”, “obey the traffic rules so no punishment is given” and other else.

User also will be given the details of how to communicate with other users and how to play together or against some other players. All the messaging is done via chat which is provided in the game. User can send message during the game without returning to the main menu but with some restrictions. He can see his messages and send new ones after stopping the car at the side of the road. Since our game is real life adapted, user can also guess what to do, when and where to do.

3.2. Connect and play with other users
When user wants to play online, he is asked for the username and password to connect to the server. Then he resumes his career. He can see the career status on the screen, the map, the status of the car and some extra things we provide. Playing online is not different from the training part basically. Unlike from the training part, user has to be more careful about his money, because he can end his career. So he has to fulfill even the simple rules to not to lose money. The main goal of the game is make user to learn and apply the real life conditions to this virtual environment and somehow feel the difficulty of the real life. He has to obey the traffic rules, make the customer happy with extra things, pay the taxes regularly, attract the customer by either upgrading his car, his fame or providing different things that other taxis donot have, give less damage to car and etc.

User also has to be a member of a cabstand to make big money, because the cabstands have both fixed and more customers. By selecting and being a member of a cabstand which has high profit rate or not so many members, s/he can double his wealth.

After having enough money some users may come together and establish their own cabstand and try to increase its fame among customers. This provides them to get the all profit and hire whoever they want. The members of the new cabstand have to select a manager. But the cabstand has to be managed very well to compete with the other ones. But due to the time constraints, this part is not guaranteed to be manipulated.
There are also some extra features that we have not decided yet but can be good to increase competition among users. The user can buy share from some buildings such as petrol station, maintenance shop or others. He does not have to buy all of the shares. The more he pays, the more the shares and the profit he gets from that one. Manager is the one having the highest share on that building. The manager is responsible for the prices, taxes, penalties and etc. If he follows a good strategy on managing, he can double the profit. The more the money, the easier the life.

4. INTERFACE DESIGN
Design of the user interface is in high importance, because interface is the vitrine of the product with respect to the user. A shop with well designed vitrine attracts more customers; same is valid for a software product. Furthermore this is a vital issue in computer games, because players are seeking for better graphics quality.

In this part we will give information about the game menus. Since we give detailed information about menus and their functionalities, we will not go into detail in this part. But just give brief information about the menus and menu transitions.
4.1. MAIN MENU DESIGN
[image: image4.jpg]the

When game starts, main menu screen greets the user. This screen is designed in a way so as to mirror the soul of the game in one sight.

User can start an online game from online game button, a training game by clicking training button. For displaying and adjusting the game settings, options menu button must be clicked. Then options menus will appear. For viewing the development team and info about game preparation, credits menu button must be pressed. For exiting from the game to the operating system, quit button must be pressed.

We thought that full screen changes will not be very cute for starting a game. Because of this reason, we designed most of the submenus to appear not full screen but inside screen. Only options and credits menus are full screen submenus. Submenus related to game play are all small submenus, which give user the feeling of quickness for playing the game. This is essential because many people don’t like games because they open late.
4.2. ONLINE GAME MENU DESIGN

When user clicks the online game button first login menu appears.
4.2.1. Login Menu
[image: image5.jpg]Username:

Password:

. FORGOT
LOGIN SIGNUP oo b BACK

User can login to the server and thus to the game by typing the username and password to the related fields and then pressing login. If information entered are incorrect, user will be informed about the situation.

If user does not have an account, s/he can get a new account from the menu that appears when sign up button is pressed.

If user has an account but forgot the password, s/he can take his/her password via forgot password menu.

4.2.2. Sign Up Menu

[image: image6.jpg]Username:

Password:

Confirm

Password *

User can obtain a new account by entering a username, a password, then confirm password, and e-mail address. If username that the user wanted to obtain has taken before, user will be informed, and requested to enter a new username. If password confirmation is not satisfied, user will be requested to re-confirm password. When Ok button is pressed and no error occurred, account will be constituted.

4.2.3. Forgot Password Menu

[image: image7.jpg]Send Password
to E-mail

If user has an account but forgot the password, s/he can get the password by clicking send password to e-mail button. When clicked, password of the user is sent to mail address of the user that s/he assigned when taking the account.
4.3. TRAINING GAME MENU DESIGN

[image: image8.jpg]TRAINING

City Tour

Serve Passenger
Buy Fuel

Maintain Car
Visit Car Market

BACK

User can play different training games. For making a free city tour in order to learn the streets, city tour training is designed. For learning how to serve a passenger, how to buy fuel, how to maintain the car in case of a car crash or when a modification is wanted to be done, how to visit the car market so as to sell/buy car, related buttons will be pressed and game will start immediately.
4.4. OPTIONS MENU DESIGN

[image: image9.jpg]

Settings related to game play are adjusted from the submenus of options menu.

Type of the speedometer is may be set to either kmh (kilometer per hour) or mph (mile per hour) from speedometer button, either by clicking mouse button or hitting left/right arrows of the keyboard.

Audio settings, keyboard control settings and graphics settings may be done from the submenu that appears when related button is clicked.

4.4.1. Audio Menu Design

[image: image10.jpg]AUDIO

Menu Music
-+)—
Car Radio

-+

Sound Effects
O

Volume of the tune that is played when menus are active can be adjusted from “Menu Music” field. During game, user will be able to listen to music, as it is the case in real life. We named this concept as car radio, and volume of the radio may be adjusted from this menu. Adjusting radio volume is also possible from inside the game. Volume of the sound effects can also be adjusted from that menu.
4.4.2. Controls Menu Design

[image: image11.jpg]CONTROLS

Turnleft : .
TurnRight :

SET DEFAULT BACK
KEYS

Our car is controlled by the keyboard. And the controls for the keyboard can be adjusted from “Controls” menu. For adjusting a control, user will first click the control that s/he wants to change with mouse, then hit the key that s/he wants that action to be set. After setting, when back button is clicked, program will turn to the main options menu by saving last key configurations. Also user can load default key values for this menu, by clicking “Set Default Keys” button.
4.4.3. Graphics Menu Design

[image: image12.jpg]GRAPHICS

Screen Resolution
Texture Quality
World Detail

Car Detail
View Distance

' B00 x 600
‘Medium
‘High
Low

‘Near

User can adjust screen resolution either to 800 x 600 or 1024 x 768, by either clicking with mouse or by hitting left/right arrow. Texture quality may be adjusted to low, medium, or high. World detail and car detail may also be set to low, medium or high. View distance may be set to either near or far.
4.5. CREDITS DESIGN

[image: image13.jpg]

This screen shows the names of the development team, and the people that we have taken help from.
4.6. GAME SCREEN DESIGN

[image: image14.jpg]A Career:
Motor T car

This is the game screen. Player will be able to view the game from three different camera views: Inside the car, outside near and outside far. View seen above is the outside far view.

Up left corner of the screen shows the values of the fuel, speed, motor spin and gear.

Up right corner of the screen shows the status of the player: money that the player has, career of the player, damage of the car, and the driving license point. Customer satisfaction will affect the career of the player, at the beginning career will be 50 %, and change according to customer satisfaction. Car damage display will start with 0 % at the beginning, denoting no damage. When a crash occurs, car gets damaged and this info is displayed in “Car Damage” section. When user first starts the game with a new account, s/he has 100 points for driving license. As player commits traffic crime, points will be reduced from his/her driving license.

Down right corner of the screen shows the city map. Location of the car and the location that the customer must be served will be indicated on the map.

Down left corner of the screen has the in game menu. Extra jobs button makes it possible for the player to watch the state of his/her extra job. This part of the game is stated in excited requirements. In short this button will give user chance to view the state of the shares of a fuel station, or a cabstand etc. My Car button makes user learn about the statistics of his/her car. Player can change the tune, open-close radio; adjust radio volume by the menu that is opened by clicking Radio button. From the menu that is opened when Menu button is clicked, player may exit the game.
4.7. CAR MARKET MENU DESIGN

[image: image15.jpg]COST : 5
I
CASH: 9732 $ Cost of My Car :3400 $

BUY SELL
CAR CAR

BACK

In the game, user will have interaction the environment. For example so as to take a customer from the road, player must stop the taxi in a suitable area in front of the player. With the same logic, for entering car market, player must stop the taxi in the indicated area in front of the car market. Thus first user must go to the car market, and then park the car to a suitable place, and then this menu will appear.

By the help of this menu, user can sell his/her car to the server (not to a real person yet, this is an exciting requirement) by clicking “Sell Car” button. When sold, cost of the car will be added to cash of the player.

User can buy a new car, but a user is not allowed to have two cars (this is also an exciting requirement). So, if user has a car first s/he must sell it. When doesn’t have a car, user can buy a new car by first selecting the car that s/he wants. If cost of the car is less than the cash of the player, s/he will be able to buy this car. By clicking “Buy Car” button, user will own the selected car. This menu shows the properties of the car; acceleration, top speed, breaking, handling, fuel consumed per km, type of fuel that car uses. Also picture of the car, name and production year of the car is displayed on this menu.
4.8. BUY FUEL MENU DESIGN

[image: image16.jpg]Liter Cost: 1.3 §$

Fill liters of Fuel
Total Cost: $

BUY BACK

When user enters to a filling station and park the taxi to the pre-indicated place, this menu will appear. User will enter the amount of fuel that s/he wants to buy, then click “Buy” button.
5. INFRUSTRUCTURE
5.1. DELTA3D

Delta3D is a full-function game engine appropriate for a wide variety of modeling & simulation applications (training, education, visualizations, and entertainment).

The Delta3D Engine

Delta3D is an Open Source engine which can be used for games, simulations, or other graphical applications. Its modular design integrates other well-known Open Source projects such as Open Scene Graph, Open Dynamics Engine, Character Animation Library, and OpenAL. Rather than bury the underlying modules, Delta3D just integrates them together in an easy-to-use API -- always allowing access to the important underlying components. This provides a high-level API while still allowing the end user the optional, low-level functionality. Delta3D renders using OpenGL and imports a whole list of diverse file formats (.flt, .3ds, .obj, etc.).
Supported Platforms
Currently, Delta3D is developed and tested on Windows XP using Microsoft Visual Studio .NET (7.1) and Fedora Core 4 using gcc 4.0.0. All the underlying dependencies are cross-platform as well, so just about any platform should be compatible with some modifications to the source (only Win32 and Linux are supported at the moment).
Key Features of the Delta3D Game Engine

· High level C++ API with Python bindings
· STAGE: A powerful editor for building 3D worlds and scripting sequences.
· Supported on Windows XP and Linux.
· Particle systems
· 3D audio rendering
· Supports numerous standard 3D file formats (.3ds, .flt, .osg, .obj, etc.)
· Game-style client/server networking
· Extensible terrain architecture
· Terrain generation directly from source DTED
· Tool suite: STAGE, Particle System Editor, 3D Model Viewer
· 3D content exporters for Max 7, Maya 6, and Blender 2.37

5.2. CAL3D

Cal3D is a skeletal based 3D character animation library written in C++ in a way that is both platform-independent and graphics API-independent. Cal3D's essentials can be divided into 2 parts: the C++ library and the exporter. The exporter is what we would use to take our characters (built in a 3D modeling package) and create the Cal3D-format files that the library knows how to load.

The exporters are actually plug-ins for 3D modeling packages. This allows 3D artists to use the modeling tools that they're already comfortable with. The C++ library is what we would actually use in our application, whether it's a game or a VR application. The library provides methods to load our exported files, build characters, run animations, and access the data necessary to render them with 3D graphics.

 Cal3D doesn't do graphics, so we are responsible for making a bridge between Cal3D and whatever graphics API we want to use. This includes things like loading textures, handling materials, and rendering the models to the screen. Making a decent character will require the use of a modeling package like 3D Studio MAX. Since we are thinking to use 3D MAX, if we use animation in our game -i,e for pedestrian- we will possibly use this library. Delta 3D has also some animation libraries but Cal3D make animations more effectively.
5.3. OPEN DYNAMICS ENGINE

ODE is an open source, high performance library for simulating rigid body dynamics. It is fully featured, stable, mature and platform independent with an easy to use C/C++ API. It has advanced joint types and integrated collision detection with friction. ODE is useful for simulating vehicles, objects in virtual reality environments and virtual creatures. It is currently used in many computer games, 3D authoring tools and simulation tools. So we are going to use this engine for instance our car physics. Basic features of ODE include :
· World

 Gravity and time integration

 Can be on its own thread

· Space

 Optimizing collision detection

· Body

 Physical object

 Size, mass and position

· Geometry

 Collision detection

 Rendering

There are 6 types of geometries: Sphere, box, cylinder, ray, triangle mesh, and user defined. For our car, body is a box for example.

5.4. OPENAL

Audio features in games are indispensable. It takes users at the center of it.Therefore the attractiveness of the game depends on the realism of the environment and the flow of action. Sound effects are one of the major features that affect the realism of the atmosphere. Besides, playing music during the game increases the entertaining factor. For this purpose the software must be able to play audio files.

Furthermore, playing videos during the game not only provides realism but also helps attracting the players to the flow of the story. As a design issue, we are going to implement a multimedia module that answers these needs. The module consists of a static class which stores and manages the audio files or video file that is played. We will define methods to play menu music (played only in menus), background music (played during the game-play), and play various sound effects (sounds that are caused by the elements in the game - car, objects and collisions).

For these capabilities we will make use of free libraries such as DevLib and OpenAL to handle these issues easily and efficiently. OpenAL is a cross-platform 3D audio API appropriate for use with gaming applications and many other types of audio applications. The library models a collection of audio sources moving in a 3D space that are heard by a single listener somewhere in that space. The basic OpenAL objects are:

· a Listener
· a Source
· a Buffer
There can be a large number of Buffers, which contain audio data. Each buffer can be attached to one or more Sources, which represent points in 3D space which are emitting audio. There is always one Listener object (per audio context), which represents the position where the sources are heard -- rendering is done from the perspective of the Listener.
On the other DevLib is a relatively new but much more talented library which also provides classes for playing both music files and video files. Basically DevLib is an object-oriented framework written in C++. The main advantages of using DevLib is that it provides user friendly abstraction of heavily used resources such as fonts, images, 3D meshes, files, xml, zip-archives, sounds, videos. DevLib library itself makes use of DevIL, FreeType 2, LUA, ODE, libjpeg, libmpeg2, libpng, TinyXML, unzip, ZLib, SDL, DirectX 9, FMOD, GLEW and STL libraries to fulfill its requirements. One may save/load images, export meshes from LightWave, 3D Studio MAX and Maya, play sound files, show videos, execute LUA scripts and manage consoles which allow updating the value of user-specified keys at run-time. DevLib supports OpenGL and DIRECTX as render system, PNG, JPG, BMP, TGA file extensions in image management DevLib is fully compatible with Microsoft's Visual C++ 2003.
5.5. ARTIFICIAL INTELLIGENCE ENGINE

As computer games develop, the demand for more sophisticated computer controls increases. At this point AI gains more importance day by day. In an artificial intelligence engine there should be some requirements. An effective artificial intelligence engine should support agents that are:

· Reactive

· Context Specific

· Flexible

· Realistic

· Easy to Develop

Reactive agents are methods that compute just one next action in every instant based on the current context. Context specific agents ensure that their actions are consistent with past sensor information and the agent’s past actions. Flexible agents have a choice of high level tactics with which to achieve current goals and a choice of lower level behaviors with which to implement current tactics. Realistic agents behave like humans. More specifically, they have the same strengths has human players as well as the same weaknesses. Finally, an artificial intelligence engine can make agent development easier by using a knowledge representation that is easy to program and by reusing knowledge as much as possible. Our game will also provide some AI features. For example in the streets there will be cars and pedestrians that are produced by server. There are some artificial intelligence engines but Delta3D also has a library called dtAI which provides this capability.
5.6. NETWORK

In a head-to-head death match multiplayer game, players form ad-hoc and short-lived sessions. Any client can be selected as a server and the speed is much higher than an online game. There is no persistent state in these games.

However in a MMOG there must be a server other than the clients computers and connection should be persistent. So the infrastructure in server should be handled in a good way.

Since we are going to implement a MMOG, we will consider 3 main things while developing our game in terms of networking such as: Timing, Identification and Determinism.
· Timing:
We need to be able to synchronize time to be able to identify when things happen in the game and when messages arrive. The most complex timing problem is a real-time system, for obvious reasons.

· Identification:
Identification is being able to direct the correct data to the correct area in our game. We do not need to worry about routing with most networking implementations, but we need to come up with a way to uniquely identify each machine and have all other connected machines aware of that identification and "who they're talking to". We also need in-game identification to make sure we're sending info to/from the right objects.
· Determinism:
Determinism is the predictability of our game. We only need to send as much info across the network as we need to ensure matching game states across the board. So game will only require small amounts of information (ie: the exact choices the user made, because these are the only points that difference can exist in the system).
We are going to implement a multi-threaded server with (possibly) UDP network protocol as our game can be regarded as a real-time system. Delta3D also supports and use some network libraries, but it supports only 256 players concurrently. So we will implement our own network infrastructure using C++ socket programming in order to supply players more than 256. Our server will be the heart of the game. It will keep track of all the objects, players, events and ensure that each client gets the information it needs, as well as processing incoming data from the clients.

5.7. DATABASE

Online games must be refreshed with new content constantly to keep the game alive and exciting for the players. The easiest and most convenient method for this is simply downloading the new content onto the player's computer via the patching process. Since we are planning to develop an online game, it is a must for us to use a database. For database there are some choices for us – i.e. MSSQL, MYSQL, ORACLE and etc…

In our database we will store some data. These data will highly affect our data transfer rate and game performance. Some data will include:

· User accounts

· User statistics

· Game data

For example regarding to user account we can store user’s name, password, mail attributes. As to user statistics, we keep users total money, cars features such as model, damage level. Game data include:
· Terrain features

· Sound effects

· Menu options

· Map, cars, city data

Of course accessing database and retrieving data require cost and decreases the speed. So some information can be manipulated without storing data in the database. For example objects that are not changeable can be stored in a file. Since server capacity is restricted, there will be some restrictions. For example if a user do not participate to game throughout 2 months, his account will be wiped in the database. Once the server is initiated, each user, to join the virtual world, uses a client to connect to the server by notifying the central database regarding the user’s login information. If a new user logs in, the central database will register a new account for the user, otherwise, the user will be checked for authorization. The state information of each user should be stored on the server, where the user first created his account.
 MMOGs with a client/server architecture have a single huge “game state” which is the game world’s data usually held exclusively by the server. This data is extremely important to the game and to access; changes to the data are strictly monitored by the server software.

6. DETAILED DESIGN
6.1. ACTIVITY DIAGRAMS
[image: image17.jpg]raining Activity Diagram

iy
D 69 €363

e e g ®
Fel

T

m@@@a@@

Cd Ed Ea Fa Ea <O

For training diagram we have 5 activities originated from the starting condition. These are select training, select online game, select options, select credits and click exit game. Select options and select credits returns to the initial condition after implementing their activities. On the other hand, exit game implements exit game and finishes the activities.

Select training and select new online game passes another condition after their activities. Online game condition is explained in diagram2 part. 6 activities originate from select training condition. These are; city tour, serve passengers, go filling station, maintain car, visit car market. After their activities, all these buttons return to the condition from which they are originated. Click resume button behaves according to a condition. If it creates the “resume the game” activity, this return to the condition from which the click resume button activity is originated. Otherwise it returns to the starting point.
[image: image18.jpg]EIED

Ew Ed Ea e

€3€:

For online game diagram we have 4 activities originated from the starting condition. These are login, sign up, forgot password and back buttons. Sign up and forgot password returns to the initial condition after implementing their activities. On the other hand, back button implements exit and returns to the condition from which it is originated.

Select login passes another condition after verifying that player username and password are correct. 5 activities originates from online game condition. These are; click status, click radio, click my car, click map and menu buttons. After their activities, all these buttons except menu return to the condition from which they are originated. Click menu button behaves according to a condition. If player logouts, activity returns to the starting condition. Otherwise it returns to the condition from which the menu button activity is originated.
6.2. SEQUENCE DIAGRAM
[image: image19.jpg]SEQUENCE DIAGRAM

We represented the time-method sequence relationship in this diagram.

· At the beginning, the user must login the system, so user enter his username and password. At this stage user object sends login() method to server for verifying.
· Server object starts its lifeline when user sends his login info. After connecting database and verifying user account info, server make connection with the game and player and maintain it unless user exit the game.

· After confirming user password, server sends display() method to GUI.

· GUI object is related to the Delta3D game engine via openPlayMenu() method.

· Delta 3D engine is core of the system. It provide bridge between player and system. After user enter the game, engine sends loadData() method to Open Scene Graph object. This object loads necessary information regarding to game (car models, city map, textures etc…) and system waits for user to do action.

· If user moves the car system must do corresponding actions. First of all system should ensure that inputs are available. For this purpose delta engine sends getInput() method to dtCore class. As a result this class provides necessary functionality.

· After getting input parameters computer must calculate these to move car from one place to other. At this point delta engine sends calculatePath() method to Open Dynamics Engine.

· At this point server must provide some future states. So server sends nextState () method to AI engine.

· Since visual and audio effects provide entertainment, engine sends renderDisplay () and playAudio() methods to Graphics and OpenAL objects.

· System processes these methods iteratively and if user play exit button then GUI sends exitGame() method to server. Servers send users info to database via saveData() method call. Then server sends disconnect() method to user.

6.3. COLLABORATION DIAGRAM
[image: image20.jpg]COLLOBORATION DIAGRAM

415 exitGame()

2 verify()

2.1: saveData()

Oamgixou ;L

OmuapNRed

The relationships of the classes are as below:

User Class:

· Server via login() and disconnect()

Server Class:

· Database via confirmUser() and saveData()

· GUI via display() and exitGame()

GUI Class:

· Delta 3D engine via openPlayMenu()

Delta 3D Engine Class

· Open Scene Graph via loadData()

· dtCore via getInput()

· Open Dynamics Engine via calculatePath()

· AI engine via nextState()

· Graphics via render()

· OpenAL via playAudio()

6.4. DATA FLOW DIAGRAM
In this section, the system is represented with a Data Flow Diagram (DFD), which depicts

information flow and the transforms that are applied as data move from input to output. Input resources to the system are mainly the keyboard, mouse, texture, models, images, audio are main. Outputs of the system are mainly graphic, sound.
6.4.1. DFD Level 0

[image: image21.jpg]Graphic and Sound

6.4.2. DFD Level 1
[image: image22.jpg]

The system is composed of six sub modules and the data flows among them.

Input Controller is responsible to invoke suitable events according to keyboard mouse inputs
Load/Save module manages the load/save operations. It is also responsible for loading a new map. To do these, it reads information from database or from files to the Game Engine. On the other hand, it writes the game save data to files and to database.

Graphic Engine manipulates and transmits the visual data that it receives from the central Game Engine to the monitor.

Sound Generator serves the requests of Game Engine and transmits the sound read directly from file to the speakers.

Physical Engine is responsible for detecting the collisions of cars and deciding movement of car.

Network Engine send information, received from Game Engine in a predefined stream format, to the server and gets information from server such as; traffic information, saved game.
6.5. USE CASE DIAGRAM
[image: image23.jpg]

[image: image24.jpg]

Our main aim here is to determine actors and their activities. Use case diagrams based on there actor group.

	Maintenance
	User can configure the car. By increasing comfort of the car he attract much customer.

	Repair Car
	Repair damages

	Update Car
	Change parts of car with new ones

	Buy Extra Accessory
	Buy extra accessory like coffee machine

	Go to Car Market
	User can go car market to sell his/her car or buy a new car.

	Sell Car
	Sell his/her car

	Buy New Car
	In order to buy a new car, he/she has to sell his/her car.

	Serve Passenger
	User can make money by serving passenger. Money depends on his/her quality of service.

	Join Cabstand
	User also can join cabstand. In this he/she can make much money.

6.6. CLASS DIAGRAM
[image: image25.jpg]UML Class Diagram

MNPlayer

lusername:string

IMNPlayer():void
lgetUsername(void):string
[setUsername(string):void
lgetEmail(void):string
lsetEmail(string):void
learnMoney (long
linteger):void
llooseMoney(long
linteger):void
llogout(void):void
lpositionX:float [serialize(void):stream
lpositionY:float |deSerialize(stream):void

viewDirectionX:float

viewDirectionY:float MNMap

viewDirectionZ:float
viewDirChanged:bool

IMNMap(void):void

MNCarPosition(float, float, float):
void

render (void):void

rotateX (float):void

rotateX (float):void ldeSerialize(stream):void
rotateX (float):void

rotateXYZ(float,float,float):void
istrafeRight (float):void
moveForwards (float):void
move (float,float,float):void

lgetviewbirection(void):void MNCabStand
serialize(void):stream
ieserializa(atreara) | [members:vector<MNPlayer

>

IMNCabstand(void):void

ldeSerialize(stream):void

6.7. STATE TRANSITION DIAGRAM
[image: image26.jpg]options

signup

oven gane U

st e losiine

reading user input
erme and
pasward

play gune

backtom

Y, save status

- loading: This is the state when user first run the game. The saved options are loaded according to the selected username. When loading is completed, this state is directed to the read user input state.

- reading user input: This is the state in which the main menu is displayed. User can select the options from menu, then options state becomes active. If the training item is clicked, the state is changed to the training state. The last thing that user can do in this state is to connect to server. Then he is directed to the get username and password state.

- get username and password: When user wants to play online and continues or starts to a new career, he is firstly asked for the username and password. If he is a new to the game and has no career, he goes to sign up state and register. If he is already a member, he enters his info and send server for verification.

- connect to server: This is the state where the user is verified. If the username and corresponding password are correct, this state is changed to loading career state. Otherwise the user is asked again to enter the username and password correctly at get username and password state.

- loading career: If the user is verified by server, his status which is saved at database, is loaded with all options. Then immediately the play state comes.

- play game: This is the main state of the game. The user continues his career at this state. There are transitions to other states in this one.

- reset career: If user wants to reset his career due to some bad conditions, he is directed to this state. Then he becomes a new user.

- save status: This is the state in which the career status at that time is saved to the user account in database. While loading the career, the last save is valid.

- back to main menu: To disconnect from server and return to the main menu, this state is used. Transition to this state is possible either from play game or from save status states.

- training: This is the exploring game and learning the basics state. After choosing which part to play, user can play the game in a single player mode.

7. DATABASE SCHEMA
PLAYER

	username
	password
	money
	carId
	LastLogin

	drivingLisence
	careerId
	
	
	

This table contains infromation about registered users.

Primary key is username.

CAR

	CarId
	ownerUsername
	modelId
	Year
	Value

 Users’ cars are saved int his table.

Primary key is carId.

DAMAGE

	CarId
	damagedPart
	damageRate
	
	

This table holds the damage information of a car.

Primary key si the carId.

MODIFY

	CarId
	modifiedPart
	Cost
	Date
	ValueIncRate

This table contains the modification of the cars.

Primary key is carId and modifiedPart.

CABSTAND

	Name
	Location
	numberOfMembers
	
	

Cabstand infromation is hold in this table.

Primary key is name.

MEMBERS

	cabstandName
	playerName
	contracId
	memberSince
	EntranceFee

The members of a cabstand are kept in this table.

Primary key is cabstandName.

CONTRACT

	contractId
	duration
	profitRate
	compensationCost
	CareerLimit

The contract which the player has to accept when he wants to enter a cabstand

Primary key is contractId.

ONLINE_USERS

	username
	loginTime
	
	
	

This table is used to save the current online users.

Primary key is username.

MODEL

	modelId
	Name
	acceleration
	topSpeed
	Handling

Different car models and thir properties are kept in this table.

Primary key is modelId.

EXTRA_JOBS

	Username
	jobId
	Share
	
	

This table contains the users’ extra jobs.

Primary key is username and jobId.

JOBS

	JobId
	Name
	profitRate
	manager
	Location

Jobs are hols in this table.

Primary key is jobId.

CAREER

	Username
	Point
	
	
	

This table is used to save Players’ career information.

Primary key is username.

8. Syntax Specification
As every software development has its own syntax, we decided to determine our own syntax specification for our project. Since “The TAXI” is a large project, having programming guidelines from the beginning will be useful for us. This is a vital issue, because it will be impossible to understand the code for others who are not the author of the code. As the total lines will grow, it may become impossible to debug the code unless we obey a common syntax.

Most of the rules we stated below are the general rules that are being widely used by the coders all over the world. Here we are restating the ones that we will use in our project.

Our team will try to stick to the guidelines as much as possible, which are mentioned below.

8.1. Database Naming Conventions
Names of entities in our database have capital letters at the beginning of each word forming it. For example, the entity holding accounts of the players has the name “PlayerList”. The names of the attributes of the tables have an underscore (“_”) between the words forming it, and are in lowercase. For example, the attributes of the “PlayerList” table may be as follows: “user_name” and “career_id”.
8.2. File Naming Conventions
Names of the files containing class definitions will have the same name as the class. Documentation related file names will be initiated with “Doc_” prefix. And the implementation files will be classified according to the module they are belonging to. They will be given clear names describing their content and prefixed with the module they are in.
8.3. Classes
Classes will be declared in the following order: private data members and member functions, protected data members and member functions, and public data members (if any) and member functions. We will try not to use public variables as much as possible. We will try to write global variable free code, since this causes serious conflicts between different coders. We will use set and get methods instead. The names of the classes will be unique and will start with “C_”.

8.4. Method and Function Definitions
All the method and function definitions will be preceded with the following lines of comments:
//--

// Description: Description of the method/function

// Prototype : <return type> <function name> (<parameter type> <parameter name>…)

// Parameters : <parameter name> <parameter description>

// Return : <return value>< return value description>

// Exception : <exception> <description of exception (when it is thrown)>

//---

The functions will have meaningful names in order to be understood easily. First letter of the function will be small letters; all other letters are also small letters except the first letters of the words. No underscores will be used. For example, “getPlayerName()” is a valid function name for our project.
8.5. GENERAL CODING PRINCIPLES
· We will try to write as self explanatory code as possible. Since writing tricky but short codes makes code impossible to understand even for the author of the code after some time, we prefer self explanatory but long code.

· When debugging the code, if a correction is need, instead of quick solutions, we prefer more clever solutions that are written after long thoughts. This is because most of the time short and dirty solutions add two bugs to code when solving just one.

· We will use the CVS account that will be supplied to us by the department as frequently as possible. Since four people working on the same project may corrupt each others code, CVS may become a lifesaver for us in some point.
8.6. Variable Naming Conventions
In our project, the variable names will have some additional name prefixes that indicate the scope of the variable. A global variable will be prefixed with "g_" if exists (we hope it won’t), a static member variable will be prefixed with "s_".

8.7. Commenting
Commenting of code is essential for later understanding and maintenance and is thus mandatory in our source code. However, it is not efficient to over-comment the code. Only the parts that cannot be immediately understood by looking at the code should be commented.
· Complicated calculations and operations should always be commented by adding a multi-line comment block with detailed descriptions.

· All classes must have a brief and detailed description that is usually put right in front of the class declaration in the header file.

· All member functions that are part of the class must have a brief description, if applicable. This description must be put just before the method definition in the implementation file.

· The documentation for public member variables or static class variables can only contain a brief description and need not have a detailed description.

· All source files must have a header like the following at the beginning of the file:
//-------------------------------------

// The TAXI
// File: File Name

// Author: Author’s Name

// Version: x.y

// Edited: Date(dd.mm.yy) , Hour(hh:mm)

// Comment: Comments

//--------------------------------------

//--

// Long comments which need more than one line use

// this block comment style

//--
9. GANNT CHART
[image: image27.jpg]Analysis 01710796 [05/11/06

Proposal Jot/10/06 [10710706

Deciding on platforms 10710706 [30r10/06
Listing requirements 1010106 | 30/10/05
Marketing research 20110706 [29710/06
Preparing analysis repart 20710706 [05/11/06
Milestone] 05/11/06

Design 07713708 | 15701707

Design madules and sub modules (07/11/06 | 2/11/06
Basic user interface design [21/11/06 [07/12/06.
Gatatass (on server) design u/tisos [oorizr06
Preparing design report 29711706 [15712/06
Implementation of demo 11712708 [23712705
Wilestone | 23/11/08

Detailed Research [o5/11/08 | 30/05/07
Rraiona database management 5 |o711/07 /03107
Research on efficient data transfer on Net _|10/02/07 |20/03/07
Socket programming analysis [10/02/07 [10704707
Tdentitying 5P requirements 10702707 [20704707
Research on car physics AT (12702707 [05704707
Open source car physica engines analysia 10101107 | 2005107
Tdentifying engines requirements 12/03/07 | 71/04/07
3D Modeling software anaiysis [09/01/07 |07/01/07
ol ol e oo, [1y10/8 25105108
Collecting music and sound 11710705 |25/05/06
[20/01/07 [30/05/07

Main menu design (detailed) [0/01707 | 10702707
Constructing modules 20702707 [30704707
Integrating moduies 10704707 [15705/07
Testing & bebugging 02705707 [15702707
Preparing help file 11705707 [24/05/07
Preparing installation guide [11/05/07 | 25708707
30/05/30

Preparing installation package
Milestone.

1505730
Jortet

01/06/07

[image: image28.png]

PAGE
- 3 -

